Development of a Real-time Embedded System for Speech Emotion Recognition
نویسندگان
چکیده
Speech emotion recognition is one of the latest challenges in speech processing and Human Computer Interaction (HCI) in order to address the operational needs in real world applications. Besides human facial expressions, speech has proven to be one of the most promising modalities for automatic human emotion recognition. Speech is a spontaneous medium of perceiving emotions which provides in-depth information related to different cognitive states of a human being. In this context, we introduce a novel approach using a combination of prosody features (i.e. pitch, energy, Zero crossing rate), quality features (i.e. Formant Frequencies, Spectral features etc.), derived features ((i.e.) Mel-Frequency Cepstral Coefficient (MFCC), Linear Predictive Coding Coefficients (LPCC)) and dynamic feature (Mel-Energy spectrum dynamic Coefficients (MEDC)) for robust automatic recognition of speaker’s emotional states. Multilevel SVM classifier is used for identification of seven discrete emotional states namely angry, disgust, fear, happy, neutral, sad and surprise in ‘Five native Assamese Languages’. The overall experimental results using MATLAB simulation revealed that the approach using combination of features achieved an average accuracy rate of 82.26% for speaker independent cases. Real time implementation of this algorithm is prepared on ARM CORTEX M3 board. Keywords—Linear Predictive Coding Coefficients, Mel Frequency Cepstral Coefficients, Prosody features, Quality features, Speech Emotion Recognition, Support Vector Machine.
منابع مشابه
Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملStatistical Variation Analysis of Formant and Pitch Frequencies in Anger and Happiness Emotional Sentences in Farsi Language
Setup of an emotion recognition or emotional speech recognition system is directly related to how emotion changes the speech features. In this research, the influence of emotion on the anger and happiness was evaluated and the results were compared with the neutral speech. So the pitch frequency and the first three formant frequencies were used. The experimental results showed that there are lo...
متن کاملA Real-Time Electroencephalography Classification in Emotion Assessment Based on Synthetic Statistical-Frequency Feature Extraction and Feature Selection
Purpose: To assess three main emotions (happy, sad and calm) by various classifiers, using appropriate feature extraction and feature selection. Materials and Methods: In this study a combination of Power Spectral Density and a series of statistical features are proposed as statistical-frequency features. Next, a feature selection method from pattern recognition (PR) Tools is presented to e...
متن کامل